Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre
نویسندگان
چکیده
Mode division multiplexing (MDM)- using a multimode optical fiber's N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting's 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than -15 dB mode selectivity and without cascaded beam splitting's 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM-1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10(-3).
منابع مشابه
Spatially and Spectrally Flexible Elastic Optical Networking
While the rapid deployment of wavelength-division multiplexing (WDM) technologies sustained the explosive and exponential network traffic growths in the past decade, the continuing trend of exponential traffic growth driven by data centers and emerging new services is demanding deployment of more scalable and flexible networking technologies. The legacy WDM technologies can support traffic up t...
متن کاملUltra-high-density spatial division multiplexing with a few-mode multicore fibre
Single-mode fibres with low loss and a large transmission bandwidth are a key enabler for long-haul high-speed optical communication and form the backbone of our information-driven society. However, we are on the verge of reaching the fundamental limit of single-mode fibre transmission capacity. Therefore, a new means to increase the transmission capacity of optical fibre is essential to avoid ...
متن کاملAll-optical mode-group multiplexed transmission over a graded-index ring-core fiber with single radial mode.
We present a design of graded-index ring-core fiber (GI-RCF) supporting 3 linearly polarized (LP) mode-groups (i.e. LP01, LP11 and LP21) with a single radial index of one for mode-division multiplexed (MDM) transmission. Reconfigurable spatial light modulator (SLM) based spatial (mode) (de)multiplexers are used to systematically characterize spatial/temporal modal properties of the GI-RCF. We a...
متن کاملRecent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing.
There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication...
متن کاملOptical communication beyond orbital angular momentum
Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015